Artemovych O.d., Lukashenko M.p. on Rigid Derivations in Rings

ثبت نشده
چکیده

We prove that in a ring Rwith an identity there exists an element a ∈ R and a nonzero derivation d ∈ Der R such that ad(a) 6= 0. A ring R is said to be a d-rigid ring for some derivation d ∈ Der R if d(a) = 0 or ad(a) 6= 0 for all a ∈ R. We study rings with rigid derivations and establish that a commutative Artinian ring R either has a non-rigid derivation or R = R1 ⊕ · · · ⊕ Rn is a ring direct sum of rings R1, . . . , Rn every of which is a field or a differentially trivial v-ring. The proof of this result is based on the fact that in a local ring R with the nonzero Jacobson radical J(R), for any derivation d ∈ Der R such that d(J(R)) = 0, it follows that d = 0R if and only if the quotient ring R/J(R) is differentially trivial field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially trivial left Noetherian rings

We characterize left Noetherian rings which have only trivial derivations.

متن کامل

Rigid left Noetherian rings

Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...

متن کامل

On derivations and biderivations of trivial extensions and triangular matrix rings

‎Triangular matrix rings are examples of trivial extensions‎. ‎In this article we determine the structure of derivations and biderivations of the trivial extensions‎, ‎and thereby we describe the derivations and biderivations of the upper triangular matrix rings‎. ‎Some related results are also obtained‎.

متن کامل

Lie Ideals and Generalized Derivations in Semiprime Rings

Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015